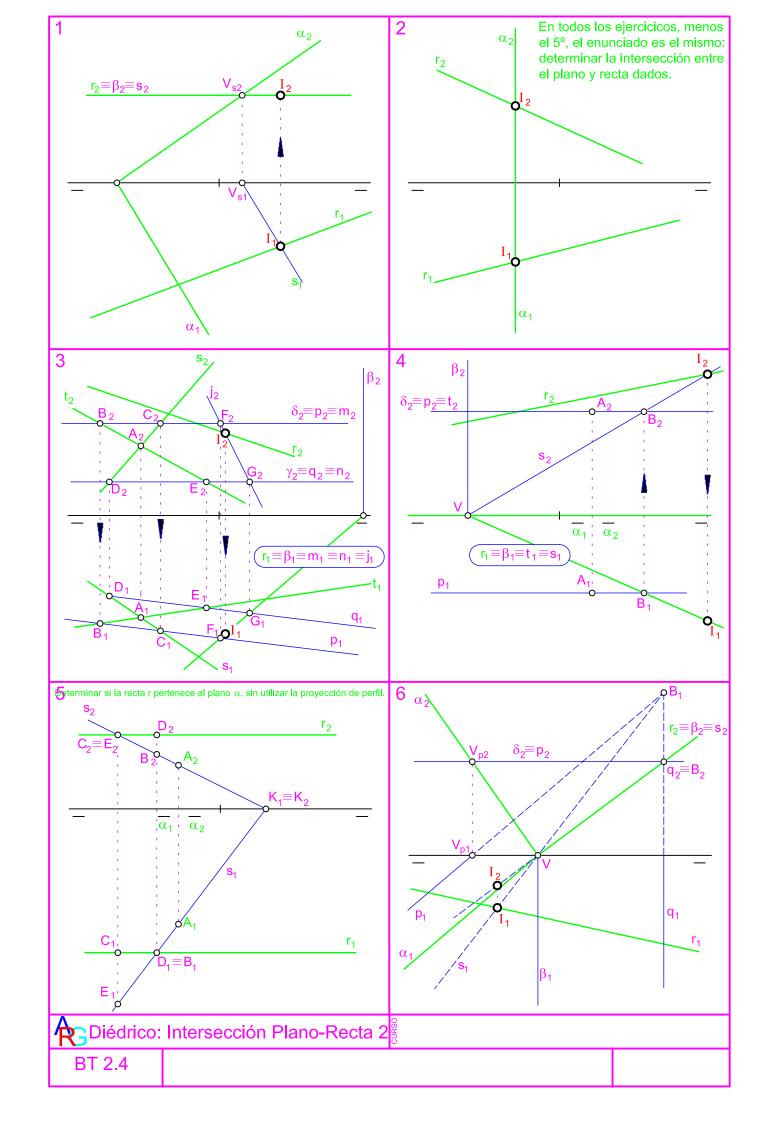


- 1. En el primer caso, el plano auxiliar podría ser un proyectante, pero como la recta es horizontal, es más sencillo utilizar un horizontal β, que corta al plano α, según una recta horizontal, s, cuya proyección horizontal, s1, corta a la r1 en la proyección I1, del punto intersección I buscado. La proyección vertical se determina como siempre (seguir el sentido de las flechas).
- 2. Este segundo caso es de aquellos, que puestos en un examen, producen desazón, pues de lo fácil que es, el alumno piensa que "hay gato encerrado", y por unos momentos se devana los sesos, para encontrar donde está el engaño. Engaño no hay, pues con los planos de perfil, sucede como con los proyectantes, pero por partida doble, los puntos intersección se obtienen directamente, donde cortan las trazas del plano con las proyecciones homónimas de la recta.
- 3. Este tercer caso, sí que es algo enrevesado, pues se sale de lo que estamos acostumbrados. El plano dado, α, está definido por un par de rectas, t y s, que se cortan en el punto A. Pero en este caso, no se puede determinar sus trazas dentro del papel, luego no tenemos las del plano. Estamos en la situación de cuando las trazas de los planos, no se cortan dentro del papel. Veamos los pasos, que son similares:
- La recta r, la hacemos contener en un proyectante horizontal β.
- Tenemos que determinar la intersección del plano $\alpha(s,t)$ con él β , para ello ...
- Se dibuja un plano horizontal δ , que corta al proyectante β , según la recta horizontal, m, y al plano α , según la recta también horizontal, p, obtenida de la siguiente manera:
- A. δ_2 corta a las proyecciones t₂ y s₂ en las proyecciones B₂ y C₂, cuyas proyecciones horizontales, se obtienen, como siempre, al cortar las líneas de proyección a las respectivas proyecciones horizontales, de las rectas t y s.
- B. Se une estas últimas proyecciones, teniendo así la proyección horizontal, p1, de la recta p, que corta a la proyección r1 en F1, proyección horizontal del punto F.
- C. Se determina la proyección vertical del punto F, que está en la traza vertical, δ_2 , del plano δ . Ya tenemos un punto,F, de la recta intersección entre el plano proyectante β , y el α (s,t).
- Para obtener otro punto, G, se sigue similar proceso, pero con el plano horizontal $\gamma(\gamma_2)$.
- Se une las proyecciones de los puntos F y G, y se tiene la recta j(j1,j2), cuya proyección vertical corta a r2 en I2. Solo queda obtener la proyección horizontal, I1, del punto de intersección I.

Observación de este ejercicio:Las rectas p y q, son horizontales, luego sus proyecciones horizontales, dan la dirección de la traza horizontal del plano α . Si se hubiera cortado a las rectas, t y s, por planos frontales, se habría obtenido la dirección de la traza vertical. Esto nos da un procedimiento, para determinar las direcciones de las trazas, aunque no podamos obtener estas.

- 4. En este caso, de la recta intersección entre el proyectante horizontal β , que contiene a la recta r, y el plano α , solo disponemos de un punto, el vértice V, por tanto se necesita otro plano auxiliar.
- Utilizando el horizontal δ, cuya traza vertical δ2, pasa por la proyección vertical, A2, del punto A. De esta manera, la recta intersección, p, entre el plano δ y él α, se obtiene con facilidad, pues su proyección horizontal, p1, pasa por A1.
- La intersección del plano δ con el proyectante β, da la recta t, cuya proyección horizontal t1 corta a p1 en la proyección B1. B2 se obtiene como siempre. Al unir las proyecciones del punto B con el vértice, V, se obtiene la recta s(s1,s2), cuya proyección vertical, corta a r1 en la proyección I2.
- 5. El quinto caso no es una intersección de recta con plano, sino una comprobación de pertenencia, veamos el razonamiento.
- Este ejercicio se resuelve de manera muy sencilla en la proyección de perfil, al comprobar que la proyección de perfil, r3, está o no sobre la proyección de perfil, α3, del plano α. Ya adelantamos que la recta r no pertenece al plano α. Ahora veamos por qué, sin utilizar el plano de proyección de perfil, PP:
- Todas las rectas de una plano que corta a la LT o son paralelas a la LT o la cortan.
- Dibujamos una recta, cualesquiera s(s1,s2) del plano α , para ello es suficiente, que sus proyecciones pasen por las homónimas del punto A, y además se corten en un punto cualquiera K(K1,K2) de la LT.
- Resulta que su proyección vertical s₁, corta a la vertical r₁ en la proyección C₂. Si desde esta proyección dibujamos la línea de proyección, vemos que corta en dos proyecciones distintas a las horizontales, r₁ y s₁, es decir, que se obtienen dos puntos, C y E, resultando que él C no pertenece al plano α.
- Similar razonamiento podemos seguir con la intersección de las proyecciones horizontales, r1 y s1.
- ullet Concluimos de todo esto, que las rectas s y t se cruzan, luego la recta r no pertenece al plano lpha. En general en este tipo de ejercicios, hay que comprobar que dos puntos de la recta, están en el plano, para verificar la pertenencia.
- 6. En este sexto caso, tenemos la fatalidad, de la coincidencia de los vértices del proyectante vertical β y el plano α, teniendo que recurrir a un plano horizontal δ. El resto del proceso es similar al visto en casos anteriores, donde solo teníamos un punto de la recta intersección.
 En este caso la intersección del plano β con el δ, da una recta de punta q(q1,q2).
 - La recta intersección entre el plano, β , y el α , da la recta, s, que corta a la, r, en el punto I buscado, que está en el 4º cuadrante.



- En el primer caso, el plano auxiliar podría ser un proyectante, pero como la recta es horizontal, es más sencillo utilizar un horizontal β, que corta al plano α, según una recta horizontal, s, cuya proyección horizontal, s1, corta a la r1 en la proyección I1, del punto intersección I buscado. La proyección vertical se determina como siempre (seguir el sentido de las flechas).
- 2. Este segundo caso es de aquellos, que puestos en un examen, producen desazón, pues de lo fácil que es, el alumno piensa que "hay gato encerrado", y por unos momentos se devana los sesos, para encontrar donde está el engaño. Engaño no hay, pues con los planos de perfil, sucede como con los proyectantes, pero por partida doble, los puntos intersección se obtienen directamente, donde cortan las trazas del plano con las proyecciones homónimas de la recta.
- 3. Este tercer caso, sí que es algo enrevesado, pues se sale de lo que estamos acostumbrados. El plano dado, α , está definido por un par de rectas, t y s, que se cortan en el punto A. Pero en este caso, no se puede determinar sus trazas dentro del papel, luego no tenemos las del plano. Estamos en la situación de cuando las trazas de los planos, no se cortan dentro del papel. Veamos los pasos, que son similares:
- La recta r, la hacemos contener en un proyectante horizontal β.
- Tenemos que determinar la intersección del plano $\alpha(s,t)$ con él β , para ello ...
- Se dibuja un plano horizontal δ , que corta al proyectante β , según la recta horizontal, m, y al plano α , según la recta también horizontal, p, obtenida de la siguiente manera:
- A. δ2 corta a las proyecciones t2 y s2 en las proyecciones B2 y C2, cuyas proyecciones horizontales, se obtienen, como siempre, al cortar las líneas de proyección a las respectivas proyecciones horizontales, de las rectas t y s.
- B. Se une estas últimas proyecciones, teniendo así la proyección horizontal, p1, de la recta p, que corta a la proyección r1 en F1, proyección horizontal del punto F.
- C. Se determina la proyección vertical del punto F, que está en la traza vertical, δ_2 , del plano δ . Ya tenemos un punto,F, de la recta intersección entre el plano proyectante β , y el α (s,t).
- Para obtener otro punto, G, se sigue similar proceso, pero con el plano horizontal $\gamma(\gamma_2)$.
- Se une las proyecciones de los puntos F y G, y se tiene la recta j(j1,j2), cuya proyección vertical corta a r2 en I2. Solo queda obtener la proyección horizontal, I1, del punto de intersección I.

Observación de este ejercicio:Las rectas p y q, son horizontales, luego sus proyecciones horizontales, dan la dirección de la traza horizontal del plano α . Si se hubiera cortado a las rectas, t y s, por planos frontales, se habría obtenido la dirección de la traza vertical. Esto nos da un procedimiento, para determinar las direcciones de las trazas, aunque no podamos obtener estas.

- 4. En este caso, de la recta intersección entre el proyectante horizontal β , que contiene a la recta r, y el plano α , solo disponemos de un punto, el vértice V, por tanto se necesita otro plano auxiliar.
- Utilizando el horizontal δ, cuya traza vertical δ2, pasa por la proyección vertical, A2, del punto A. De esta manera, la recta intersección, p, entre el plano δ y él α, se obtiene con facilidad, pues su proyección horizontal, p1, pasa por A1.
- La intersección del plano δ con el proyectante β, da la recta t, cuya proyección horizontal t¹ corta a p¹ en la proyección B¹. B² se obtiene como siempre. Al unir las proyecciones del punto B con el vértice, V, se obtiene la recta s(s¹,s²), cuya proyección vertical, corta a r¹ en la proyección I².
- 5. El quinto caso no es una intersección de recta con plano, sino una comprobación de pertenencia, veamos el razonamiento.
- Este ejercicio se resuelve de manera muy sencilla en la proyección de perfil, al comprobar que la proyección de perfil, r₃, está o no sobre la proyección de perfil, α₃, del plano α. Ya adelantamos que la recta r no pertenece al plano α. Ahora veamos por qué, sin utilizar el plano de proyección de perfil, PP:
- Todas las rectas de una plano que corta a la LT o son paralelas a la LT o la cortan.
- Dibujamos una recta, cualesquiera s(s1,s2) del plano α, para ello es suficiente, que sus proyecciones pasen por las homónimas del punto A, y además se corten en un punto cualquiera K(K1,K2) de la LT.
- Resulta que su proyección vertical s₁, corta a la vertical r₁ en la proyección C₂. Si desde esta proyección dibujamos la línea de proyección, vemos que corta en dos proyecciones distintas a las horizontales, r₁ y s₁, es decir, que se obtienen dos puntos, C y E, resultando que él C no pertenece al plano α.
- Similar razonamiento podemos seguir con la intersección de las proyecciones horizontales, r1 y s1.
- ullet Concluimos de todo esto, que las rectas s y t se cruzan, luego la recta r no pertenece al plano lpha. En general en este tipo de ejercicios, hay que comprobar que dos puntos de la recta, están en el plano, para verificar la pertenencia.
- 6. En este sexto caso, tenemos la fatalidad, de la coincidencia de los vértices del proyectante vertical β y el plano α, teniendo que recurrir a un plano horizontal δ. El resto del proceso es similar al visto en casos anteriores, donde solo teníamos un punto de la recta intersección.
 En este caso la intersección del plano β con el δ, da una recta de punta q(q1,q2).
 - La recta intersección entre el plano, β , y el α , da la recta, s, que corta a la, r, en el punto I buscado, que está en el 4º cuadrante.